


USE OF THE KING METHOD FOR THE SYNTHESIS
OF IMIDAZO[1,2-*a*]PYRIDINES

N. O. Saldabol, L. L. Zeligman,
and S. A. Giller

UDC 547.83'781.07

We have established that 2-substituted and 2,3-disubstituted imidazo[1,2-*a*]pyridines can be obtained directly from ketones by a combination of two methods – the King method [1], used for the preparation of β -ketoalkylpyridinium iodides from ketones, iodine, and pyridine; and the Chichibabin method [2], in which the β -ketoalkyl-2-aminopyridinium salts usually obtained from α -halo ketones and 2-aminopyridine are intermediates for the subsequent cyclization to imidazo[1,2-*a*]pyridines.

TABLE 1. Characteristics of the Compounds Obtained

Comp.			Mp, °C		R_f ^a	UV spectrum in alcohol, λ_{max} , nm (log ϵ)	Empirical formula	Yield, tech. product, %
	R	R'	by new method	literature data				
I	4-Bromophenyl	H	215–7 ^b	218 ^b	0,70	250, 314, 324 (4,75; 4,12; 4,13)	$C_{13}H_9BrN_2$	76
II	4-Nitrophenyl	H	258–60 ^c	261 ^c	0,83	225, 276, 345 (4,60; 4,37; 4,41)	$C_{13}H_9N_3O_2$	83
III	3-Nitrophenyl	H	203–4 ^c	205 ^c	0,73	245, 312 (4,76; 4,08)	$C_{13}H_9N_3O_2$	90
IV	Phenyl	H	132–3 ^d	135–136 ^d	0,68	245, 323 (4,89; 4,26)	$C_{13}H_9N_2$	92
V	Phenyl	CH ₃	157 ^e	156–157 ^e	0,66	240, 320 (4,57; 3,88)	$C_{14}H_{11}N_2$	7 ^f
VI	2-Furyl	H	110–2 ^d	110 ^d	0,75	250, 317 (4,47; 3,99)	$C_{11}H_8N_2O$	26 ^f
VII	2-Thienyl	H	138–9 ^d	137–138 ^d	0,75	255, 330 (4,46; 4,17)	$C_{11}H_8N_2S$	5 ^f

^aPlates of the "Silufol" UV₂₅₄ type, ethanol–benzene system (1:2).

^bFrom alcohol.

^cFrom pyridine.

^dFrom n-octane.

^eObtained for the first time by the Chichibabin method in 4% yield (extracted with n-octane).

^fPurified by extraction with hot n-octane or petroleum ether.

The synthesis was accomplished by refluxing 0.1 mole of the ketone with 0.1 mole of iodine and 0.2 mole of 2-aminopyridine in dry benzene or chloroform for 1 h, separation of the precipitate, dilution of it with 500 ml of water, neutralization by heating with sodium bicarbonate, and separation of the imidazopyridine derivative as a precipitate (I–IV) or a resinous product (V–VIII). The identity of the majority of the products obtained by the new method and the Chichibabin method was proved by means of thin-layer chromatography and UV spectroscopy (Table 1). The C, H, and N content, which coincided with the calculated values within the limits of analytical error, was determined for all of the compounds.

LITERATURE CITED

1. L. C. King, J. Am. Chem. Soc., 66, 894 (1944).

Institute of Organic Synthesis, Academy of Sciences of the Latvian SSR, Riga. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 860–861, June, 1971. Original article submitted December 17, 1970.

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

2. A. E. Chichibabin, Zh. Russk. Khim. Obshch., 58, 1159 (1926).
3. Ng. Ph. Buu-Hoi and Ng. Hoan, Rec. Trav. Chim., 68, 441 (1949).
4. Ng. Ph. Buu-Hoi and Ng. H. Khoi, Comptes Rend., 230, 967 (1950).
5. N. O. Saldabol, S. A. Giller, L. N. Alekseeva, B. A. Brizga, and L. V. Kruzmetra, Khim.-Farmats. Zh., 4, No. 7, 20 (1970).
6. L. G. Angert, Ya. L. Gol'dfarb, G. I. Gorushkina, A. I. Zenchenko, A. S. Kuz'minskii, and B. M. Fedorov, Zh. Prikl. Khim., 32, 412 (1959).